Browsing by Author "Rosa, AM"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Combined use of a femtosecond laser and a microkeratome in obtaining thin grafts for Descemet stripping automated endothelial keratoplasty: an eye bank studyPublication . Murta, JN; Rosa, AM; Quadrado, MJ; Russo, AD; Silva, MFPurpose: To evaluate the use of a femtosecond laser combined with a microkeratome in the preparation of posterior corneal disks for Descemet stripping automated endothelial keratoplasty (DSAEK). Methods: This experimental study involved ultrathin DSAEK tissue preparation of 22 donor corneas unsuitable for transplantation. The first cut was performed with an Intralase® FS60 laser and the second cut with a Moria CBm 300-µm microkeratome. The thickness of the first cut was modified for each cornea to obtain a final graft thickness of less than 110 µm. Precut and postcut central pachymetry were performed with an ultrasonic pachymeter. Central endothelial cell density (ECD) was calculated before and 24 hours after tissue preparation. Results: Final graft thickness was 105.0 ± 26.1 (SD) µm (range 65-117). The mean microkeratome head cut thickness was 324.5 ± 10.9 µm (range 310-345). Precut and postcut ECDs averaged 2250 ± 222 and 2093 ± 286 cells/mm2, respectively, representing 6.9% of cell loss. No corneas were perforated. Conclusion: Femtosecond FS60 lasers and Moria CBm 300-µm microkeratomes can be used sequentially to prepare consistently thin DSAEK grafts with no irregular cuts or cornea perforations.
- Femtosecond laser and microkeratome-assisted Descemet stripping endothelial keratoplasty: first clinical resultsPublication . Rosa, AM; Silva, MF; Quadrado, MJ; Costa, E; Marques, I; Murta, JNPurpose: To evaluate the use of a femtosecond laser combined with a microkeratome in the preparation of posterior corneal disks for Descemet stripping automated endothelial keratoplasty (DSAEK). Methods: This experimental study involved ultrathin DSAEK tissue preparation of 22 donor corneas unsuitable for transplantation. The first cut was performed with an Intralase® FS60 laser and the second cut with a Moria CBm 300-µm microkeratome. The thickness of the first cut was modified for each cornea to obtain a final graft thickness of less than 110 µm. Precut and postcut central pachymetry were performed with an ultrasonic pachymeter. Central endothelial cell density (ECD) was calculated before and 24 hours after tissue preparation. Results: Final graft thickness was 105.0 ± 26.1 (SD) µm (range 65-117). The mean microkeratome head cut thickness was 324.5 ± 10.9 µm (range 310-345). Precut and postcut ECDs averaged 2250 ± 222 and 2093 ± 286 cells/mm2, respectively, representing 6.9% of cell loss. No corneas were perforated. Conclusion: Femtosecond FS60 lasers and Moria CBm 300-µm microkeratomes can be used sequentially to prepare consistently thin DSAEK grafts with no irregular cuts or cornea perforations.
- Manifestações Oculares de Polineuropatia Amiloidótica Familiar Tipo I em Doentes Submetidos a Transplante HepáticoPublication . Rosa, AM; Quadrado, MJ; Ferrão, J; Marques, I; Pereira, H; Costa, E; Murta, JN
- Quantitative evaluation of visual function 12 months after bilateral implantation of a diffractive trifocal IOLPublication . Marques, JP; Rosa, AM; Quendera, B; Silva, F; Mira, J; Lobo, C; Castelo-Branco, M; Murta, JNPURPOSE: To quantitatively evaluate visual function 12 months after bilateral implantation of the Physiol FineVision® trifocal intraocular lens (IOL) and to compare these results with those obtained in the first postoperative month. METHODS: In this prospective case series, 20 eyes of 10 consecutive patients were included. Monocular and binocular, uncorrected and corrected visual acuities (distance, near, and intermediate) were measured. Metrovision® was used to test contrast sensitivity under static and dynamic conditions, both in photopic and low-mesopic settings. The same software was used for pupillometry and glare evaluation. Motion, achromatic, and chromatic contrast discrimination were tested using 2 innovative psychophysical tests. A complete ophthalmologic examination was performed preoperatively and at 1, 3, 6, and 12 months postoperatively. Psychophysical tests were performed 1 month after surgery and repeated 12 months postoperatively. RESULTS: Final distance uncorrected visual acuity (VA) was 0.00 ± 0.08 and distance corrected VA was 0.00 ± 0.05 logMAR. Distance corrected near VA was 0.00 ± 0.09 and distance corrected intermediate VA was 0.00 ± 0.06 logMAR. Glare testing, pupillometry, contrast sensitivity, motion, and chromatic and achromatic contrast discrimination did not differ significantly between the first and last visit (p>0.05) or when compared to an age-matched control group (p>0.05). CONCLUSIONS: The Physiol FineVision® trifocal IOL provided satisfactory full range of vision and quality of vision parameters 12 months after surgery. Visual acuity and psychophysical tests did not vary significantly between the first and last visit.