Browsing by Author "Matos, MT"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Release of IL-1beta via IL-1beta-converting enzyme in a skin dendritic cell line exposed to 2,4-dinitrofluorobenzenePublication . Matos, MT; Jaleco, SP; Gonçalo, Margarida; Duarte, CB; Lopes, MCWe used a mouse fetal skin dendritic cell line (FSDC) to study the effect of the strong allergen 2,4-dinitrofluorobenzene (DNFB) on interleukin (IL)-1beta release and IL-1beta receptor immunoreactivity. Stimulation with DNFB (30 minutes) increased IL-1 release without changing the mRNA levels of the protein. Furthermore, DNFB increased transiently the interleukin-1beta-converting enzyme (ICE) activity, as measured with its fluorogenic substrate Z-Tyr-Val-Ala-Asp-AFC. The ICE inhibitor Z-YVAD-FMK prevented the release of IL-1beta evoked by DNFB. Incubation of the cells with DNFB (30 minutes) strongly increased IL-1beta receptor immunoreactivity. The rapid effect of DNFB on the release of mature IL-1beta, without inducing an increase of IL-1beta mRNA in FSDC, suggests a posttranslational modification of pro-IL-1beta by ICE activity.
- Role of oxidative stress in ERK and p38 MAPK activation induced by the chemical sensitizer DNFB in a fetal skin dendritic cell linePublication . Matos, MT; Duarte, CB; Gonçalo, Margarida; Lopes, MCThe intracellular mechanisms involved in the early phase of dendritic cell (DC) activation upon contact with chemical sensitizers are not well known. The strong skin sensitizer 2,4-dinitrofluorobenzene (DNFB) was shown to induce the activation of mitogen-activated protein kinases (MAPK) in DC. In the present study, we investigated a putative role for oxidative stress in DNFB-induced MAPK activation and upregulation of the costimulatory molecule CD40. In a DC line generated from fetal mouse skin, DNFB induced a significant increase in protein oxidation, measured by the formation of carbonyl groups, while it had almost no effect on lipid peroxidation. The antioxidants glutathione and vitamin E, which inhibit protein and lipid oxidation, respectively, were used to assess the role of oxidative stress in DNFB-induced MAPK activation. Glutathione, but not vitamin E, inhibited DNFB-induced p38 MAPK and ERK1/2 phosphorylation, whereas none of the antioxidants interfered significantly with the DNFB-induced upregulation of CD40 protein levels. Taken together, these results indicate that DNFB activates p38 MAPK and ERK1/2 via production of reactive oxygen species, and that protein oxidation plays an important role in MAPK activation.