Browsing by Author "Crespo, I"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Amplified and Homozygously Deleted Genes in Glioblastoma: Impact on Gene Expression LevelsPublication . Crespo, I; Tão, H; Nieto, AB; Rebelo, O; Domingos, P; Vital, AL; Patino, MC; Barbosa, MD; Lopes, MC; Resende de Oliveira, C; Orfão, A; Tabernero, MDBACKGROUND: Glioblastoma multiforme (GBM) displays multiple amplicons and homozygous deletions that involve relevant pathogenic genes and other genes whose role remains unknown. METHODOLOGY: Single-nucleotide polymorphism (SNP)-arrays were used to determine the frequency of recurrent amplicons and homozygous deletions in GBM (n = 46), and to evaluate the impact of copy number alterations (CNA) on mRNA levels of the genes involved. PRINCIPAL FINDINGS: Recurrent amplicons were detected for chromosomes 7 (50%), 12 (22%), 1 (11%), 4 (9%), 11 (4%), and 17 (4%), whereas homozygous deletions involved chromosomes 9p21 (52%) and 10q (22%). Most genes that displayed a high correlation between DNA CNA and mRNA levels were coded in the amplified chromosomes. For some amplicons the impact of DNA CNA on mRNA expression was restricted to a single gene (e.g., EGFR at 7p11.2), while for others it involved multiple genes (e.g., 11 and 5 genes at 12q14.1-q15 and 4q12, respectively). Despite homozygous del(9p21) and del(10q23.31) included multiple genes, association between these DNA CNA and RNA expression was restricted to the MTAP gene. CONCLUSIONS: Overall, our results showed a high frequency of amplicons and homozygous deletions in GBM with variable impact on the expression of the genes involved, and they contributed to the identification of other potentially relevant genes.
- Intratumoral patterns of clonal evolution in gliomasPublication . Vital, AL; Tabernero, MD; Crespo, I; Rebelo, O; Tão, H; Gomes, F; Lopes, MC; Orfão, AFew studies have explored the patterns of clonal evolution in gliomas. Here, we investigate the cytogenetic patterns of intratumoral clonal evolution of gliomas and their impact on tumor histopathology and patient survival. Cytogenetic analysis of 90 gliomas was performed in individual tumor cells (>200 cells/tumor) using multicolor (N = 16 probes) interphase-FISH. Overall, chromosome gains were more frequent than chromosome losses. Gains of chromosome 7 and/or EGFR amplification were detected in 91% of the cases, whereas del(9p21) (77%) and del(10q23) (78%) were the most frequent chromosome losses. Virtually, all cases (99%) showed >/=2 tumor cell clones, with higher numbers among high- versus low-grade gliomas (p = 0.001). Nine different cytogenetic patterns were found in the ancestral tumor clones. In most gliomas, ancestral clones showed abnormalities of chromosome 7, 9p, and/or 10q and cytogenetic evolution consisted of acquisition of additional abnormalities followed by tetraploidization. Conversely, early tetraploidization was associated with low-grade astrocytomas-2/3 pilocytic and 3/6 grade II diffuse astrocytomas-and combined loss of 1p36/19q13 with oligodendrogliomas, respectively; both aberrations were associated with a better patient outcome (p = 0.03). Overall, our results support the existence of different pathways of intratumoral evolution in gliomas.