Browsing by Author "Cavaleiro, C"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Comparison of three differerent epidural analgesic protocols for pain relief after cesarean sectionPublication . Cavaleiro, C; Delgado, R; Carvalho, B; Valentim, A; Mártires, E; Martins-Nunes, J; Abrantes, S
- Differential effects of the essential oils of Lavandula luisieri and Eryngium duriaei subsp. juresianum in cell models of two chronic inflammatory diseasesPublication . Rufino, AT; Ferreira, I; Judas, F; Salgueiro, L; Lopes, MC; Cavaleiro, C; Mendes, AFCONTEXT: Effective drugs to treat osteoarthritis (OA) and inflammatory bowel disease (IBD) are needed. OBJECTIVE: To identify essential oils (EOs) with anti-inflammatory activity in cell models of OA and IBD. MATERIALS AND METHODS: EOs from Eryngium duriaei subsp. juresianum (M. Laínz) M. Laínz (Apiaceae), Laserpitium eliasii subsp. thalictrifolium Sennen & Pau (Apiaceae), Lavandula luisieri (Rozeira) Rivas-Martínez (Lamiaceae), Othantus maritimus (L.) Hoff. & Link (Asteraceae), and Thapsia villosa L. (Apiaceae) were analyzed by GC and GC/MS. The anti-inflammatory activity of EOs (5-200 μg/mL) was evaluated by measuring inducible nitric oxide synthase (iNOS) and nuclear factor-κB (NF-κB) activation (total and phosphorylated IκB-α), in primary human chondrocytes and the intestinal cell line, C2BBe1, stimulated with interleukin-1β (IL-1β) or interferon-γ (IFN-γ), IL-1β and tumor necrosis factor-α (TNF-α), respectively. RESULTS: The EO of L. luisieri significantly reduced iNOS (by 54.9 and 81.0%, respectively) and phosphorylated IκB-α (by 87.4% and 62.3%, respectively) in both cell models. The EO of E. duriaei subsp. juresianum caused similar effects in human chondrocytes, but was inactive in intestinal cells, even at higher concentrations. The EOs of L. eliasii subsp. thalictrifolium and O. maritimus decreased iNOS expression by 45.2 ± 8.7% and 45.2 ± 6.2%, respectively, in C2BBe1 cells and were inactive in chondrocytes. The EO of T. villosa was inactive in both cell types. DISCUSSION AND CONCLUSION: This is the first study showing anti-inflammatory effects of the EOs of L. luisieri and E. duriaei subsp. juresianum. These effects are specific of the cell type and may be valuable to develop new therapies or as sources of active compounds with improved efficacy and selectivity towards OA and IBD.
- Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritisPublication . Rufino, AT; Ribeiro, M; Sousa, C; Judas, F; Salgueiro, L; Cavaleiro, C; Mendes, AFOsteoarthritis is a progressive joint disease and a major cause of disability for which no curative therapies are yet available. To identify compounds with potential anti-osteoarthritic properties, in this study, we screened one sesquiterpene, E-caryophyllene, and two monoterpenes, myrcene and limonene, hydrocarbon compounds for anti-inflammatory, anti-catabolic and pro-anabolic activities in human chondrocytes. At non-cytotoxic concentrations, myrcene and limonene inhibited IL-1β-induced nitric oxide production (IC50=37.3μg/ml and 85.3µg/ml, respectively), but E-caryophyllene was inactive. Myrcene, and limonene to a lesser extent, also decreased IL-1β-induced NF-κB, JNK and p38 activation and the expression of inflammatory (iNOS) and catabolic (MMP-1 and MMP-13) genes, while increasing the expression of anti-catabolic genes (TIMP-1 and -3 by myrcene and TIMP-1 by limonene). Limonene increased ERK1/2 activation by 30%, while myrcene decreased it by 26%, relative to IL-1β-treated cells. None of the compounds tested was able to increase the expression of cartilage matrix-specific genes (collagen II and aggrecan), but both compounds prevented the increased expression of the non-cartilage specific, collagen I, induced by IL-1β. These data show that myrcene has significant anti-inflammatory and anti-catabolic effects in human chondrocytes and, thus, its ability to halt or, at least, slow down cartilage destruction and osteoarthritis progression warrants further investigation.
- Screening of five essential oils for identification of potential inhibitorsPublication . Neves, A; Rosa, S; Gonçalves, J; Rufino, A; Judas, F; Salgueiro, L; Lopes, MC; Cavaleiro, C; Mendes, AFNuclear factor-kappaB is a key transcription factor activated by pro-inflammatory signals, like interleukin-1beta (IL-1), being required for the expression of many inflammatory and catabolic mediators, such as nitric oxide (NO), that play an important role in arthritic diseases. This work aimed at screening and identifying natural inhibitors of IL-induced NF-kappaB activation and NO production in human articular chondrocytes. Five essential oils obtained from four plants of the Iberian flora, Mentha x piperita L. (Lamiaceae), Origanum virens L. (Lamiaceae), Lavandula luiseri L. (Lamiaceae), and Juniperus oxycedrus L. subsp. oxycedrus (Cupressaceae), were screened for their ability to prevent IL-1-induced NO production. The oil showing higher inhibitory activity was fractionated, concentrated, analyzed for composition elucidation and prepared for further assays. For this purpose, the human chondrocytic cell line C-28/I2 was used to evaluate NF-kappaB activation by determining the cytoplasmic levels of the total and phosphorylated forms of the inhibitory protein, I kappaB-alpha, and the NF-kappaB-DNA binding activity. The essential oil from the leaves of J. oxycedrus in a concentration of 0.02 % (v/v) achieved the greatest inhibition (80 +/- 8%) of IL-1-induced NO production. Chemical analysis showed that this essential oil is predominantly composed of monoterpene hydrocabons, being alpha-pinene [2,6,6-trimethyl-bicyclo(3.1.1)hept-3-ene] the major constituent (76 %). Similarly to the effect of the whole oil, a fraction containing 93% alpha-pinene reduced significantly IL-1-induced I kappaB-alpha degradation. Moreover, alpha-pinene also decreased I kappaB-alpha phosphorylation, NF-kappaB-DNA binding activity, and NO production. Another fraction containing oxygenated mono- and sesquiterpenes was nearly as effective as alpha-pinene. The ability of the alpha-pinene-containing fraction to reduce IL-1-induced NF-kappaB activation and NO production warrants further studies to demonstrate the usefulness of alpha-pinene in the treatment of arthritic diseases and other conditions in which NF-kappaB and NO play pathological roles.