Repository logo
 
Publication

Pathophysiology of Blood–Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery

dc.contributor.authorBernardo-Castro, S
dc.contributor.authorSousa, JA
dc.contributor.authorBrás, A
dc.contributor.authorCecília, C
dc.contributor.authorRodrigues, B
dc.contributor.authorAlmendra, L
dc.contributor.authorMachado, C
dc.contributor.authorSanto, G
dc.contributor.authorSilva, F
dc.contributor.authorFerreira, L
dc.contributor.authorSantana, I
dc.contributor.authorSargento-Freitas, J
dc.date.accessioned2022-09-19T09:04:45Z
dc.date.available2022-09-19T09:04:45Z
dc.date.issued2020
dc.description.abstractThe blood-brain barrier (BBB) is a dynamic interface responsible for maintaining the central nervous system homeostasis. Its unique characteristics allow protecting the brain from unwanted compounds, but its impairment is involved in a vast number of pathological conditions. Disruption of the BBB and increase in its permeability are key in the development of several neurological diseases and have been extensively studied in stroke. Ischemic stroke is the most prevalent type of stroke and is characterized by a myriad of pathological events triggered by an arterial occlusion that can eventually lead to fatal outcomes such as hemorrhagic transformation (HT). BBB permeability seems to follow a multiphasic pattern throughout the different stroke stages that have been associated with distinct biological substrates. In the hyperacute stage, sudden hypoxia damages the BBB, leading to cytotoxic edema and increased permeability; in the acute stage, the neuroinflammatory response aggravates the BBB injury, leading to higher permeability and a consequent risk of HT that can be motivated by reperfusion therapy; in the subacute stage (1-3 weeks), repair mechanisms take place, especially neoangiogenesis. Immature vessels show leaky BBB, but this permeability has been associated with improved clinical recovery. In the chronic stage (>6 weeks), an increase of BBB restoration factors leads the barrier to start decreasing its permeability. Nonetheless, permeability will persist to some degree several weeks after injury. Understanding the mechanisms behind BBB dysregulation and HT pathophysiology could potentially help guide acute stroke care decisions and the development of new therapeutic targets; however, effective translation into clinical practice is still lacking. In this review, we will address the different pathological and physiological repair mechanisms involved in BBB permeability through the different stages of ischemic stroke and their role in the development of HT and stroke recovery.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationFront Neurol. 2020 Dec 9;11:594672.pt_PT
dc.identifier.doi10.3389/fneur.2020.594672pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.4/2334
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.subjectBarreira Hematoencefálicapt_PT
dc.subjectPermeabilidade da Membrana Celularpt_PT
dc.subjectAVC Isquémicopt_PT
dc.subjectIschemic Strokept_PT
dc.subjectBlood-Brain Barrierpt_PT
dc.subjectCell Membrane Permeabilitypt_PT
dc.titlePathophysiology of Blood–Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recoverypt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.titleFrontiers in Neurologypt_PT
oaire.citation.volume11pt_PT
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fneur-11-594672.pdf
Size:
1.6 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections