Browsing by Author "Rolo, AP"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Carvedilol: Relação Entre A Actividade Antioxidante e Inibição da Transição de Permeabilidade MitocondrialPublication . Oliveira, PJ; Esteves, T; Rolo, AP; Monteiro, P; Gonçalves, L; Palmeira, CM; Moreno, AJOBJECTIVES: The mitochondrial permeability transition (MPT) is an event related to severe oxidative stress (for example, during myocardial ischemia and reperfusion) and excessive mitochondrial calcium accumulation, also being implicated in cell death. In this study, we compared the effect of carvedilol on the cardiac MPT induced by calcium and phosphate (Ca/Pi) and calcium/carboxyatractyloside (Ca/Catr). Oxidative stress plays a major role in MPT induction by Ca/Pi, leading to the oxidation of protein thiol groups, in contrast with Ca/Catr, where such oxidation is secondary to MPT induction and is not caused by oxidative stress. MATERIALS AND METHODS: Mitochondria were isolated from rat hearts and parameters related to MPT induction were evaluated (n = 5 for each inducer): mitochondrial swelling and oxidation of protein thiol groups (both measured by spectrophotometry). RESULTS: Using Ca/Pi, carvedilol protected mitochondria from MPT induction, particularly in its high conductance form. Its effect was demonstrated by analyzing the decrease in mitochondrial swelling amplitude. Simultaneously, we observed inhibition of protein thiol group oxidation (p < 0.001). By contrast, carvedilol did not show any protective effect with Ca/Catr. CONCLUSIONS: Carvedilol was only effective against the MPT when the oxidation of protein thiol groups was the cause and not the consequence of the MPT phenomenon. The results clearly show that during myocardial aggressions (ischemia and reperfusion, for example), the protective effect of carvedilol is primarily due to an antioxidant mechanism, inhibiting the production and effects of reactive oxygen species.
- Histological changes and impairment of liver mitochondrial bioenergetics after long-term treatment with alpha-naphthyl-isothiocyanate (ANIT)Publication . Palmeira, CM; Ferreira, FM; Rolo, AP; Oliveira, PJ; Santos, MS; Moreno, AJ; Cipriano, MA; Martins, MI; Seiça, RThis study was designed to evaluate the effects of long-term treatment with alpha-naphthyl-isothiocyanate (ANIT) on liver histology and at the mitochondrial bioenergetic level. Since, ANIT has been used as a cholestatic agent and it has been pointed out that an impairment of mitochondrial function is a cause of hepatocyte dysfunction leading to cholestatic liver injury, serum markers of liver injury were measured and liver sections were analyzed in ANIT-treated rats (i.p. 80 mg/kg/week x 16 weeks). Mitochondrial parameters such as transmembrane potential, respiration, calcium capacity, alterations in permeability transition susceptibility and ATPase activity were monitored. Histologically, the most important features were the marked ductular proliferation, proliferation of mast cells and the presence of iron deposits in ANIT-treated liver. Mitochondria isolated from ANIT-treated rats showed no alterations in state 4 respiration, respiratory control ratio and ADP/O ratio, while state 3 respiration was significantly decreased. No changes were observed on transmembrane potential, but the repolarization rate was decreased in treated rats. Consistently with these data, there was a significant decrease in the ATPase activity of treated mitochondria. Associated with these parameters, mitochondria from treated animals exhibited increased susceptibility to mitochondrial permeability transition pore opening (lower calcium capacity). Since, human cholestatic liver disease progress slowly overtime, these data provide further insight into the role of mitochondrial dysfunction in the process.
- Impacto do Carvedilol Sobre O Dano Mitocondrial Induzido Por Hipoxantina/xantina Oxidase: Que Papel Na Isquemia e Reperfusão do Miocárdio?Publication . Oliveira, PJ; Rolo, AP; Monteiro, P; Gonçalves, L; Palmeira, CM; Moreno, AJOBJECTIVES: The cardioprotective effects of carvedilol (CV) may be explained in part by interactions with heart mitochondria. The objective of this work was to study the protection afforded by CV against oxidative stress induced in isolated heart mitochondria by hypoxanthine and xanthine oxidase (HX/XO), a well-known source of reactive oxygen species (ROS) in the cardiovascular system. METHODS: Mitochondria were isolated from Wistar rat hearts (n = 8) and incubated with HX/XO in the presence and in the absence of calcium. Several methods were used to assess the protection afforded by CV: evaluation of mitochondrial volume changes (by measuring changes in the optical density of the mitochondrial suspension), calcium uptake and release (with a fluorescent probe, Calcium Green 5-N) and mitochondrial respiration (with a Clark-type oxygen electrode). RESULTS: CV decreased mitochondrial damage associated with ROS production by HX and XO, as verified by the reduction of mitochondrial swelling and increase in mitochondrial calcium uptake. In the presence of HX and XO, CV also ameliorated mitochondrial respiration in the active phosphorylation state and prevented decrease in the respiratory control ratio (p < 0.05) and in mitochondrial phosphorylative efficiency (p < 0.001). CONCLUSIONS: The data indicate that CV partly protected heart mitochondria from oxidative damage induced by HX and XO, which may be useful during myocardial ischemia and reperfusion. It is also suggested that mitochondria may be a priority target for the protective action of some compounds.
- Vantagens Na Utilização do Carvedilol Em Relação Ao Propranolol Na Protecção da Função Mitocondrial CardíacaPublication . Oliveira, PJ; Rolo, AP; Sardão, VA; Monteiro, P; Gonçalves, L; Providência, LA; Palmeira, CM; Moreno, AJBACKGROUND: Carvedilol is a neurohormonal antagonist of multiple action which is used in clinical practice for the treatment of congestive heart failure, mild to moderate hypertension and myocardial infarction. Previous results from our group have demonstrated that one of the main targets for the protective effect of carvedilol is the cardiac mitochondrial network. In-this work, we compare the effect of carvedilol with propranolol in different models of mitochondrial dysfunction and in the generation of transmembrane electric potential (EP). We further tested if carvedilol was able to inhibit the mitochondrial permeability transition (MPT) induced by doxorubicin and calcium-dependent cytochrome c release, a phenomenon frequently associated with apoptotic cell death. METHODS: Cardiac mitochondria were isolated by differential centrifugation. Oxygen consumption and mitochondrial EP were determined using an oxygen electrode and a tetraphenylphosphonium-sensitive electrode, respectively. Changes in mitochondrial volume and the release of cytochrome c were measured with spectrophotometric techniques. RESULTS: Propranolol, compared with carvedilol, had only a marginal effect, not only in protection against MPT induction, but also against oxygen consumption linked to the oxidation of external NADH, a process that is considered by several authors as key in the cardiotoxicity of doxorubicin. Regarding EP generation, propranolol had no effect, in contrast to carvedilol, which was confirmed to act as a protonophore. For the first time we also show that carvedilol inhibits the MPT induced by doxorubicin and calcium-dependent cytochrome c release. CONCLUSIONS: With this work, we further support the notion that carvedilol is effective in several models of mitochondrial dysfunction, particularly those involving oxidative stress. The results demonstrate that for some pathological conditions, carvedilol and propranolol have different mechanisms of action at the sub-cellular level, as propranolol seems to lack effectiveness in the protection of cardiac mitochondria.