Browsing by Author "Nunes, E"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Antioxidant and vascular effects of gliclazide in type 2 diabetic rats fed high-fat diet.Publication . Sena, CM; Louro, T; Matafome, P; Nunes, E; Monteiro, P; Seiça, RDiabetes mellitus is characterized by oxidative stress, which in turn determines endothelial dysfunction. Gliclazide is a sulphonylurea antidiabetic drug with antioxidant effects due to its azabicyclo-octyl ring. It has been reported to potentially protect the vasculature through improvements in plasma lipid levels and platelet function. We hypothesized that gliclazide has a beneficial effect on endothelial function in Goto-Kakizaki rats (GK), an animal model of type 2 diabetes fed an atherogenic diet for 4 months. We evaluated the influence of gliclazide on both metabolic and oxidative status and NO-mediated vasodilation. GKAD rats showed increased oxidative stress and impaired endothelium-dependent vasodilation. GKAD rats treated with gliclazide showed increased sensitivity to NO-mediated vasodilation, a significant decrease in fasting glycemia and insulinemia, and a significant decrease in systemic oxidative stress. In conclusion, our results suggest that gliclazide treatment improves NO-mediated vasodilation in diabetic GK rats with dyslipidemia probably due to its antioxidant effects, although we cannot rule out substantial benefits due to a reduction in fasting blood glucose. The availability of a compound that simultaneously decreases hyperglycemia, hyperinsulinemia, and inhibits oxidative stress is a promising therapeutic candidate for the prevention of vascular complications of diabetes.
- Disfunção Endotelial na Diabetes Tipo 2: Efeito de AntioxidantesPublication . Sena, CM; Nunes, E; Louro, T; Proença, T; Seiça, RMIndividuals with insulin resistance and diabetes mellitus have increased cardiovascular morbidity and mortality, caused in part by vascular complications. Endothelial dysfunction has been implicated in the pathogenesis of vascular diabetic disease. This abnormal function of the vasculature precedes cardiovascular disease and is associated with impaired endothelium-dependent vasorelaxation. The main etiology of the increased mortality and morbidity of type 2 diabetic patients is atherosclerosis. Increased production of free radicals is associated with the pathophysiology of diabetes, resulting in oxidative damage to lipids and proteins. Reduction of oxidative stress in diabetic patients may delay the onset of atherogenesis and the appearance of micro- and macrovascular complications. Alpha-lipoic acid (LA) is a multifunctional antioxidant that has been shown to have beneficial effects on polyneuropathy and on markers of oxidative stress in various tissues. This study was conducted to investigate the effects of LA on endothelial function in diabetic and hyperlipidemic animal models. Carbohydrate and lipid metabolism, endothelial function, plasma malondialdehyde (MDA) and urinary 8-hydroxydeoxyguanosine (8-OHdG) were assessed in non-diabetic controls (Wistar rats), untreated diabetic Goto-Kakizaki (GK) rats and, atherogenic diet (AD)-fed GK rats (fed with atherogenic diet only, treated with alpha-lipoic acid and treated with vehicle, for 3 months). AD resulted in a 3-fold increase in both total and non-HDL serum cholesterol levels and in a 2-fold increase triglyceride levels while endothelial function was significantly reduce MDA and 8-OHdG levels were higher in the GK and GK hyperlipidemic groups and were completely reversed by the antioxidant. Hyperlipidemic GK diabetic rats showed significantly reduced endothelial function that was partially improved with LA. Furthermore, lipoic acid significantly reduced serum cholesterol levels, without lowering HDL cholesterol. Alpha-lipoic acid supplementation represents an achievable adjunct therapy to improve endothelial function and reduce oxidative stress, factors that are implicated in the pathogenesis of atherosclerosis in diabetes.
- A role for atorvastatin and insulin combination in protecting from liver injury in a model of type 2 diabetes with hyperlipidemiaPublication . Matafome, P; Nunes, E; Louro, T; Amaral, C; Crisóstomo, J; Rodrigues, L; Moedas, AR; Monteiro, P; Cipriano, MA; Seiça, RNon-alcoholic fatty liver disease (NAFLD) is a major complication linked with the metabolic syndrome associated with dyslipidemia, inflammation, and oxidative stress. Impact of type 2 diabetes with hyperlipidemia in NAFLD has to be established, as well as the utility of commonly prescribed anti-diabetic and lipid-lowering agents in improving liver injury markers. Genetic type 2 diabetic Goto-Kakizaki rats were fed with a high-fat diet to test hepatic effects of type 2 diabetes with hyperlipidemia and the effect of atorvastatin and insulin, individually and in combination, in systemic and hepatic inflammatory and oxidative stress markers. High-fat diet aggravated fasting glycemia, systemic and liver lipids, and inflammatory and oxidative stress markers. Individual treatments improved glycemic and lipid profiles, but failed to improve inflammatory markers, whereas insulin was able to reduce liver oxidative stress parameters. Combination of insulin and atorvastatin further improved glycemic and lipid profiles and decreased circulating C-reactive protein levels and liver inflammatory and oxidative stress markers. Insulin and atorvastatin combination leads to better glycaemic and lipid profiles and to better protection against liver inflammation and oxidative stress, giving a superior level of liver protection in type 2 diabetic with hyperlipidemia.