Browsing by Author "Ferreira, IL"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Bioenergetic dysfunction in Huntington's disease human cybridsPublication . Ferreira, IL; Cunha-Oliveira, T; Nascimento, MV; Ribeiro, M; Proença, MT; Januário, C; Oliveira, CR; Rego, ACIn this work we studied the mitochondrial-associated metabolic pathways in Huntington's disease (HD) versus control (CTR) cybrids, a cell model in which the contribution of mitochondrial defects from patients is isolated. HD cybrids exhibited an interesting increase in ATP levels, when compared to CTR cybrids. Concomitantly, we observed increased glycolytic rate in HD cybrids, as revealed by increased lactate/pyruvate ratio, which was reverted after inhibition of glycolysis. A decrease in glucose-6-phosphate dehydrogenase activity in HD cybrids further indicated decreased rate of the pentose-phosphate pathway. ATP levels of HD cybrids were significantly decreased under glycolysis inhibition, which was accompanied by a decrease in phosphocreatine. Nevertheless, pyruvate supplementation could not recover HD cybrids' ATP or phosphocreatine levels, suggesting a dysfunction in mitochondrial use of that substrate. Oligomycin also caused a decrease in ATP levels, suggesting a partial support of ATP generation by the mitochondria. Nevertheless, mitochondrial NADH/NAD(t) levels were decreased in HD cybrids, which was correlated with a decrease in pyruvate dehydrogenase activity and protein expression, suggesting decreased tricarboxylic acid cycle (TCA) input from glycolysis. Interestingly, the activity of alpha-ketoglutarate dehydrogenase, a critical enzyme complex that links the TCA to amino acid synthesis and degradation, was increased in HD cybrids. In accordance, mitochondrial levels of glutamate were increased and alanine was decreased, whereas aspartate and glutamine levels were unchanged in HD cybrids. Conversely, malate dehydrogenase activity from total cell extracts was unchanged in HD cybrids. Our results suggest that inherent dysfunction of mitochondria from HD patients affects cellular bioenergetics in an otherwise functional nuclear background.
- Mitochondrial function in Parkinson's disease cybrids containing an nt2 neuron-like nuclear backgroundPublication . Esteves, AR; Domingues, AF; Ferreira, IL; Januário, C; Swerdlow, RH; Oliveira, CR; Cardoso, SMMitochondria likely play a role in Parkinson's disease (PD) neurodegeneration. We modelled PD by creating cytoplasmic hybrid (cybrid) cell lines in which endogenous mitochondrial DNA (mtDNA) from PD or control subject platelets was expressed within human teratocarcinoma (NT2) cells previously depleted of endogenous mtDNA. Complex I activity was reduced in both PD cybrid lines and in the platelet mitochondria used to generate them. Under basal conditions PD cybrids had less ATP, more LDH release, depolarized mitochondria, less mitochondrial cytochrome c, and higher caspase 3 activity. Equivalent MPP+ exposures are more likely to trigger programmed cell death in PD cybrid cells than in control cybrid cells. Our data support a relatively upstream role for mitochondrial dysfunction in idiopathic PD.
- Mitochondrial-dependent apoptosis in Huntington's disease human cybridsPublication . Ferreira, IL; Nascimento, MV; Ribeiro, MH; Almeida, S; Cardoso, SM; Grazina, M; Pratas, J; Santos, MJ; Januário, C; Oliveira, CR; Rego, ACWe investigated the involvement of mitochondrial-dependent apoptosis in Huntington's disease (HD) vs. control (CTR) cybrids, obtained from the fusion of human platelets with mitochondrial DNA-depleted NT2 cells, and further exposed to 3-nitropropionic acid (3-NP) or staurosporine (STS). Untreated HD cybrids did not exhibit significant modifications in the activity of mitochondrial respiratory chain complexes I-IV or in mtDNA sequence variations suggestive of a primary role in mitochondrial susceptibility in the subpopulation of HD carriers studied. However, a slight decrease in mitochondrial membrane potential and increased formation of intracellular hydroperoxides was observed in HD cybrids under basal conditions. Furthermore, apoptotic nuclei morphology and a moderate increase in caspase-3 activation, as well as increased levels of superoxide ions and hydroperoxides were observed in HD cybrids upon 3-NP or STS treatment. 3-NP-evoked apoptosis in HD cybrids involved cytochrome c and AIF release from mitochondria, which was associated with mitochondrial Bax translocation. CTR cybrids subjected to 3-NP showed increased mitochondrial Bax and Bim levels and the release of AIF, but not cytochrome c, suggesting a different mode of cell death, linked to the loss of membrane integrity. Additionally, increased mitochondrial Bim and Bak levels, and a slight release of cytochrome c in untreated HD cybrids may help to explain their moderate susceptibility to mitochondrial-dependent apoptosis