Browsing by Author "Coelho, J"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Recurrent duplications of the annexin A1 gene (ANXA1) in autism spectrum disordersPublication . Correia, CT; Conceição, IC; Oliveira, B; Coelho, J; Sousa, I; Sequeira, AF; Almeida, J; Café, C; Duque, F; Mouga, S; Roberts, W; Gao, K; Lowe, JK; Thiruvahindrapuram, B; Walker, S; Marshall, CR; Pinto, D; Geschwind, JI; Scherer, SW; Oliveira, G; Vicente, AMBACKGROUND: Validating the potential pathogenicity of copy number variants (CNVs) identified in genome-wide studies of autism spectrum disorders (ASD) requires detailed assessment of case/control frequencies, inheritance patterns, clinical correlations, and functional impact. Here, we characterize a small recurrent duplication in the annexin A1 (ANXA1) gene, identified by the Autism Genome Project (AGP) study. METHODS: From the AGP CNV genomic screen in 2,147 ASD individuals, we selected for characterization an ANXA1 gene duplication that was absent in 4,964 population-based controls. We further screened the duplication in a follow-up sample including 1,496 patients and 410 controls, and evaluated clinical correlations and family segregation. Sequencing of exonic/downstream ANXA1 regions was performed in 490 ASD patients for identification of additional variants. RESULTS: The ANXA1 duplication, overlapping the last four exons and 3'UTR region, had an overall prevalence of 11/3,643 (0.30%) in unrelated ASD patients but was not identified in 5,374 controls. Duplication carriers presented no distinctive clinical phenotype. Family analysis showed neuropsychiatric deficits and ASD traits in multiple relatives carrying the duplication, suggestive of a complex genetic inheritance. Sequencing of exonic regions and the 3'UTR identified 11 novel changes, but no obvious variants with clinical significance. CONCLUSIONS: We provide multilevel evidence for a role of ANXA1 in ASD etiology. Given its important role as mediator of glucocorticoid function in a wide variety of brain processes, including neuroprotection, apoptosis, and control of the neuroendocrine system, the results add ANXA1 to the growing list of rare candidate genetic etiological factors for ASD.
- Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locusPublication . Silveira, I; Miranda, C; Guimarães, L; Moreira, MC; Alonso, I; Mendonça, P; Ferro, A; Pinto-Basto, J; Coelho, J; Ferreirinha, F; Poirier, J; Vale, J; Januário, C; Barbot, C; Tuna, A; Barros, JBACKGROUND: Ten neurodegenerative disorders characterized by spinocerebellar ataxia (SCA) are known to be caused by trinucleotide repeat (TNR) expansions. However, in some instances the molecular diagnosis is considered indeterminate because of the overlap between normal and affected allele ranges. In addition, the mechanism that generates expanded alleles is not completely understood. OBJECTIVE: To examine the clinical and molecular characteristics of a large group of Portuguese and Brazilian families with ataxia to improve knowledge of the molecular diagnosis of SCA. PATIENTS AND METHODS: We have (1) assessed repeat sizes at all known TNR loci implicated in SCA; (2) determined frequency distributions of normal alleles and expansions; and (3) looked at genotype-phenotype correlations in 202 unrelated Portuguese and Brazilian patients with SCA. Molecular analysis of TNR expansions was performed using polymerase chain reaction amplification. RESULTS: Patients from 110 unrelated families with SCA showed TNR expansions at 1 of the loci studied. Dominantly transmitted cases had (CAG)(n) expansions at the Machado-Joseph disease gene (MJD1) (63%), at SCA2 (3%), the gene for dentatorubropallidoluysian atrophy (DRPLA) (2%), SCA6 (1%), or SCA7 (1%) loci, or (CTG)(n) expansions at the SCA8 (2%) gene, whereas (GAA)(n) expansions in the Freidreich ataxia gene (FRDA) were found in 64% of families with recessive ataxia. Isolated patients also had TNR expansions at the MJD1 (6%), SCA8 (6%), or FRDA (8%) genes; in addition, an expanded allele at the TATA-binding protein gene (TBP), with 43 CAGs, was present in a patient with ataxia and mental deterioration. Associations between frequencies of SCA2 and SCA6 and a frequency of large normal alleles were found in Portuguese and Brazilian individuals, respectively. Interestingly, no association between the frequencies of DRPLA and large normal alleles was found in the Portuguese group. CONCLUSIONS: Our results show that (1) a significant number of isolated cases of ataxia are due to TNR expansions; (2) expanded DRPLA alleles in Portuguese families may have evolved from an ancestral haplotype; and (3) small (CAG)(n) expansions at the TBP gene may cause SCA17.