Browsing by Author "Caetano, G"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Association between Adipokines and Biomarkers of Alzheimer's Disease: A Cross-Sectional StudyPublication . Letra, L; Matafome, P; Rodrigues, T; Duro, D; Lemos, R; Baldeiras, I; Patrício, M; Castelo-Branco, M; Caetano, G; Seiça, R; Santana, IBACKGROUND: Adipose tissue dysfunction has been implicated in the pathophysiology of Alzheimer's disease. However, the involvement of adipokines, particularly adiponectin, remains unclear. OBJECTIVE: To compare serum and cerebrospinal fluid (CSF) levels of adiponectin, leptin and leptin-to-adiponectin ratio in patients within the spectrum of Alzheimer's disease and evaluate their relationship with classical biomarkers and their value as markers of progression. METHODS: Amnestic mild cognitive impairment (MCI, n = 71) and Alzheimer's dementia (AD, n = 53) subjects were consecutively recruited for serum and CSF adiponectin and leptin determination using an analytically validated commercial enzyme-linked immunosorbent assay (ELISA). Correlations were explored using adjusted Spearman's correlation coefficients. A logistic regression model and ROC analysis were performed to evaluate the staging predictive value of adipokines. RESULTS: Serum adiponectin was 33% higher in AD when compared to MCI patients. Adiponectin CSF levels, similar in both groups, were positively correlated with Aβ42 and cognitive function, though only in women. The area under the ROC curve was 0.673 (95% CI:0.57-0.78) for serum adiponectin as predictor of dementia stage and the cut-off 10.85μg/ml maximized the sum of specificity (87%) and sensitivity (44%). CONCLUSION: Although longitudinal studies are required, we hypothesize that higher serum adiponectin in AD patients constitutes a strategy to compensate possible central signaling defects. In addition, adiponectin might be specifically assigned to neuroprotective functions in women and eventually involved in the female-biased incidence of Alzheimer's disease.
- Genotype-phenotype correlation in a cohort of Portuguese patients comprising the entire spectrum of VWD types: impact of NGSPublication . Fidalgo, T; Salvado, R; Corrales, I; Pinto, SC; Borràs, N; Oliveira, A; Martinho, P; Ferreira, G; Almeida, H; Oliveira, C; Marques, D; Gonçalves, E; Diniz, MJ; Antunes, M; Tavares, A; Caetano, G; Kjöllerström, P; Maia, R; Sevivas, T; Vidal, F; Ribeiro, LThe diagnosis of von Willebrand disease (VWD), the most common inherited bleeding disorder, is characterised by a variable bleeding tendency and heterogeneous laboratory phenotype. The sequencing of the entire VWF coding region has not yet become a routine practice in diagnostic laboratories owing to its high costs. Nevertheless, next-generation sequencing (NGS) has emerged as an alternative to overcome this limitation. We aimed to determine the correlation of genotype and phenotype in 92 Portuguese individuals from 60 unrelated families with VWD; therefore, we directly sequenced VWF. We compared the classical Sanger sequencing approach and NGS to assess the value-added effect on the analysis of the mutation distribution in different types of VWD. Sixty-two different VWF mutations were identified, 27 of which had not been previously described. NGS detected 26 additional mutations, contributing to a broad overview of the mutant alleles present in each VWD type. Twenty-nine probands (48.3 %) had two or more mutations; in addition, mutations with pleiotropic effects were detected, and NGS allowed an appropriate classification for seven of them. Furthermore, the differential diagnosis between VWD 2B and platelet type VWD (n = 1), Bernard-Soulier syndrome and VWD 2B (n = 1), and mild haemophilia A and VWD 2N (n = 2) was possible. NGS provided an efficient laboratory workflow for analysing VWF. These findings in our cohort of Portuguese patients support the proposal that improving VWD diagnosis strategies will enhance clinical and laboratory approaches, allowing to establish the most appropriate treatment for each patient.
- Genotype-phenotype correlation in a cohort of Portuguese patients comprising the entire spectrum of VWD types: impact of NGSPublication . Fidalgo, T; Salvado, R; Corrales, I; Pinto, SC; Borràs, N; Oliveira, A; Martinho, P; Ferreira, G; Almeida, H; Oliveira, C; Marques, D; Gonçalves, Elsa; Diniz, MJ; Antunes, M; Tavares, A; Caetano, G; Kjöllerström, P; Maia, R; Sevivas, TS; Vidal, F; Ribeiro, LThe diagnosis of von Willebrand disease (VWD), the most common inherited bleeding disorder, is characterised by a variable bleeding tendency and heterogeneous laboratory phenotype. The sequencing of the entire VWF coding region has not yet become a routine practice in diagnostic laboratories owing to its high costs. Nevertheless, next-generation sequencing (NGS) has emerged as an alternative to overcome this limitation. We aimed to determine the correlation of genotype and phenotype in 92 Portuguese individuals from 60 unrelated families with VWD; therefore, we directly sequenced VWF. We compared the classical Sanger sequencing approach and NGS to assess the value-added effect on the analysis of the mutation distribution in different types of VWD. Sixty-two different VWF mutations were identified, 27 of which had not been previously described. NGS detected 26 additional mutations, contributing to a broad overview of the mutant alleles present in each VWD type. Twenty-nine probands (48.3 %) had two or more mutations; in addition, mutations with pleiotropic effects were detected, and NGS allowed an appropriate classification for seven of them. Furthermore, the differential diagnosis between VWD 2B and platelet type VWD (n = 1), Bernard-Soulier syndrome and VWD 2B (n = 1), and mild haemophilia A and VWD 2N (n = 2) was possible. NGS provided an efficient laboratory workflow for analysing VWF. These findings in our cohort of Portuguese patients support the proposal that improving VWD diagnosis strategies will enhance clinical and laboratory approaches, allowing to establish the most appropriate treatment for each patient.
- JAK2V617F allele burden is associated with thrombotic mechanisms activation in polycythemia vera and essential thrombocythemia patientsPublication . Coucelo, M; Caetano, G; Sevivas, T; Almeida Santos, S; Fidalgo, T; Bento, C; Fortuna, M; Duarte, M; Menezes, C; Ribeiro, MLThe clinical courses of polycythemia vera (PV) and essential thrombocythemia (ET) are characterized by thrombohemorrhagic diathesis. Several groups have suggested an association between JAK2V617F mutation and thrombosis. We hypothesized a relationship between JAK2V617F allele burden, cellular activation parameters, and thrombosis. We evaluated a group of PV and ET patients using flow cytometry: platelet CD62P, CD63, and dense granules, platelet-leukocyte aggregates (PLA), leukocyte CD11b and monocyte tissue factor (TF) expression. All patients had increased baseline platelet CD62P and CD63 expression (p < 0.05); 71 % of PV and 47 % of ET presented with a storage pool disease. Leukocyte CD11b, TF, and PLA were elevated in all patients. TF was higher in PV compared to ET (p < 0.05) and platelet-neutrophil [polymorphonuclear (PMN)] aggregates were increased in ET versus PV (p < 0.05). In ET, PLA were correlated with platelet numbers (p < 0.05). In all patients, JAK2V617F allele burden was directly correlated with monocyte CD11b. Patients with JAK2V617F allele burden >50 % presented higher levels of leukocyte activation. In ET, thrombosis was associated with JAK2V617F mutation (p < 0.05, χ (2) = 5.2), increased monocyte CD11b (p < 0.05) and with platelet-PMN aggregates (p < 0.05). In ET patients, hydroxyurea does not significantly reduce the activation parameters. Our data demonstrate that JAK2V617F allele burden is directly correlated with activation parameters that drive mechanisms that favor thrombosis.