INTRODUCTION

- Prostate and bladder cancers are the first and fourth most common noncutaneous cancers in men in developed nations.
- Plasma is also called the fourth state of matter.
- Cold plasmas recently came into the attention of medical society due to its non-inflammatory selective ablative effects in tumour cells.
- Their effects result from different interactions between plasma components with specific structural cell elements as well as cell functionalities.
- Their selectivity of action results from the lower antioxidant defenses of tumor cells and the cell cycle block at phase G2/M in rapidly multiplying cells.
- Plasma therapy is still a developing field, but it seems to be effective against a wide range of tumors – melanoma, glioblastoma, breast, colon, lung and cervix cancer.
- Little is known about its role in the treatment of urologic neoplasms.
- **Goal:** The aim of this work was to evaluate the cytotoxicity of cold atmospheric plasma (CAP) in prostate and urinary bladder cancer cell lines.

MATERIALS AND METHODS

- Our group developed an electronic device capable of generating high output voltage that can ionize a significant fraction of air particles producing cold atmospheric plasma (CAP).
- Cell lines - plated in a concentration of 50.000-100.000 cells/mL in 200µL of cell culture medium.
- Prostate adenocarcinoma - LNCap and PC3.
- Urinary bladder carcinoma - HT1376.
- Phenotypically normal human fibroblasts cell line - HFF-1.
- The device was designed to expose cell cultures seeded in multiwell plates to short periods of CAP.
- Range from 15 to 120 seconds.

- Metabolic activity (MA) and protein content (PC) were assessed with colorimetric assays MTT and SRB, respectively.

RESULTS

- **Prostate and bladder cancers are the first and fourth most common noncutaneous cancers in men in developed nations.**
- **Plasma is also called the fourth state of matter.**
- **Cold plasmas recently came into the attention of medical society due to its non-inflammatory selective ablative effects in tumour cells.**
- **Their effects result from different interactions between plasma components with specific structural cell elements as well as cell functionalities.**
- **Their selectivity of action results from the lower antioxidant defenses of tumor cells and the cell cycle block at phase G2/M in rapidly multiplying cells.**
- **Plasma therapy is still a developing field, but it seems to be effective against a wide range of tumors – melanoma, glioblastoma, breast, colon, lung and cervix cancer.**
- **Little is known about its role in the treatment of urologic neoplasms.**
- **Goal:** The aim of this work was to evaluate the cytotoxicity of cold atmospheric plasma (CAP) in prostate and urinary bladder cancer cell lines.

MATERIALS AND METHODS

- **Our group developed an electronic device capable of generating high output voltage that can ionize a significant fraction of air particles producing cold atmospheric plasma (CAP).**
- **Cell lines - plated in a concentration of 50.000-100.000 cells/mL in 200µL of cell culture medium.**
- **Prostate adenocarcinoma - LNCap and PC3.**
- **Urinary bladder carcinoma - HT1376.**
- **Phenotypically normal human fibroblasts cell line - HFF-1.**
- **The device was designed to expose cell cultures seeded in multiwell plates to short periods of CAP.**
- **Range from 15 to 120 seconds.**

- **Metabolic activity (MA) and protein content (PC) were assessed with colorimetric assays MTT and SRB, respectively.**

RESULTS

- **Figure 1 - MTT assay results 24 h after plasma therapy application in different human cell lines: prostate adenocarcinoma (PC3 and LNCap), urinary bladder carcinoma (HT1376) and fibroblasts (HFF1) at distinct times: 15, 30, 60, 90 and 120 seconds (s). Results are expressed as percentage of metabolic activity normalized to control.**

- **Figure 2 - SRB assay results 24 h after plasma therapy application in different human cell lines: prostate adenocarcinoma (PC3 and LNCap), urinary bladder carcinoma (HT1376) and fibroblasts (HFF1) at distinct times: 15, 30, 60, 90 and 120 seconds (s). Results are expressed as percentage of protein content normalized to control.**

DISCUSSION

- **CAP is effective on LNCap and HT1376 cells – over 90% decrease in metabolic activity and protein content after only 60s of exposure.**
- **Regarding to PC3 prostate cancer cell line, there was a decrease in metabolic activity after 60 seconds similar to the other two tumor lines, but the protein content did not have the same reaction even with 120s of exposure.**
- **For the same exposure conditions, there was less change in metabolic activity or protein content of the normal fibroblast line.**
- **CAP may offer a selective anti-tumour therapy capable of providing ablation of tumours after short time courses, typically in the range of seconds-minutes, without damaging with adjacent normal tissues.**
- **Further studies are needed to determine the utility of CAP in the treatment of bladder and prostate cancer.**

REFERENCES