Journal of Dermatological Treatment

Volume 10 Number 3 September 1999

Contents

155 Editorial

Scientific Communications

157 Outpatient, short-term, once-daily, diluted, 0.1% mometasone furoate wet-wraps for childhood atopic eczema
W Y M Tang, H H L Chan, V M F Lam, L Y Chong and K K Lo

165 The effect of two urea-containing creams on dry, eczematous skin in atopic patients. I. Expert, patient and instrumental evaluation
A C Andersson, M Lindberg and M Lodén

171 The effect of two urea-containing creams on dry, eczematous skin in atopic patients. II. Adverse effects
M Lodén, A C Andersson and M Lindberg

177 Comparative efficacy of shampoos containing coal tar (4.0% w/w; Tarmeld®), coal tar (4.0% w/w) plus cloclopoxamine (1.0% w/w; Tarmeld® AF) and ketoconazole (2.0% w/w; Nizoral®) for the treatment of dandruff/seborrheic dermatitis
D B Davies, G C Boorman and D Shuttleworth

185 Treatment of pityriasis versicolor with bifonazole shampoo: a randomized double-blind study
R Segal, D Kricheli, B Zukrov and M David

189 Comparative study of the efficacy and tolerability of 4 weeks of terbinfine therapy with 8 weeks of griseofulvin therapy in children with tinea capitis
H R Memişoğlu, S Erboz, S Akkaya, T Akan, V L Aksungur, I Ünal and M Karakaş

195 Comparative stratum corneum tolerance to antiseptic cleansing products
C Piérard-Franchimont, V Goffin and G E Piérard

199 Fluconazole 50 mg/day therapy in the management of chronic paronychia
B Amichai and J Shiri

201 Topical treatment of nail psoriasis with a new corticoid-containing nail lacquer formulation
R Baran and A Testi

Case Reports

205 Oral isotretinoin therapy in two patients with lupus miliaris disseminatus faciei
S Bahadir, R Ayşin, G Cimşit, U Çobanoğlu and K Alpay

209 Fixed drug eruption to piroxicam. Positive patch tests with cross-sensitivity to tenoxicam
I S Oliveira, M Gonçalo, J P Reis and A Figueiredo

Residents and Trainees Section

213 Photodynamic therapy in dermatology
G I Stables

221 Book Reviews

223 Forthcoming Meetings
Fixed drug eruption to piroxicam. Positive patch tests with cross-sensitivity to tenoxicam

In our experience, fixed drug eruption (FDE) is not a rare example of cutaneous adverse drug reactions, but the identification of the drug responsible often remains a challenge. We report on a patient in whom piroxicam was identified as the cause of recurring lesions of FDE. Epicutaneous testing with the offending drug was positive on residual lesions, but not on uninvolved skin. Histopathological and immunohistochemical findings on the positive tests were identical to those in an acute lesion of FDE. Patch testing on lesional skin revealed cross-sensitivity between piroxicam and tenoxicam, but no reactivity to thiosalicylic acid. This suggests that the molecular moiety involved in FDE to piroxicam is shared by tenoxicam, in contrast to piroxicam photosensitivity where there is no cross-reaction between these two drugs and the offending moiety is antigenically and structurally similar to thiosalicylic acid.

Keywords: Fixed drug eruption — Positive lesional patch test — Piroxicam — Tenoxicam — Thiosalicylic acid — Cross-sensitivity

Case report

A 55-year-old woman had suffered four recurrent attacks in 8 months, consisting of painful, erythematous and oedematous 2 to 8 cm patches, localized on the trunk, buttocks and thighs. In each outbreak of cutaneous lesions, previously involved sites were affected as well as new ones. Acute lesions resolved spontaneously to bluish-brown round patches, typical of a fixed drug eruption (FDE). Although she was being treated chronically with several drugs, drug history for FDE was unrewarding. Patch testing was performed on residual lesions with the patient’s usual medication (diclofenac, nabumetone, thiocolchicoside and antiglaucoma eye drops) and, on uninvolved skin, with these drugs, with the Portuguese Contact Dermatitis Group Standard Series (which includes thiosalicylic acid 0.1% in petrolatum) and with a nonsteroidal antiinflammatory series (indomethacin, tenoxicam, diclofenac, fentiazac, naproxen, piroxicam, phenylbutazone, flurbiprofen, etofenamate, bufexamac and azapropazone). All these tests were negative.

Six months later, advised to pay attention to all drugs used, she reported a new outbreak of acute FDE lesions 24 h after taking a 20-mg tablet of piroxicam. She then recalled having occasionally taken this NSAID that was part of her husband’s medication. A month later, patch tests were performed on involved skin with piroxicam (1% and 5% in petrolatum), tenoxicam (5% in petrolatum) and thiosalicylic acid (0.1% in petrolatum). At 24 and 48 h, tests with piroxicam and tenoxicam were positive (Figure 1), with a violaceous papular erythema, similar to the patient’s acute FDE lesions, whereas patch testing with these drugs on normal uninvolved skin was negative. Thiosalicylic acid was negative in both involved and uninvolved skin.

Histopathology of an acute lesion of FDE and of the positive tests at 24 and 48 h, showed, in all three specimens, typical findings of FDE, with intense hydropic degeneration of basal cells, dyskeratotic keratinocytes, scattered mononuclear cells in the epidermis, pigmented incontinence, marked dermal papillary oedema with subepidermal bullae, vascular dilatation and a perivascular mononuclear cell infiltrate. On immunohistochemistry, performed on formaldehyde-
fixed samples, there was staining for HLA-DR in both the dermis and the epidermis with a striking positivity around keratinocytes. There was a similar staining for CD4 and CD8 on the dermal infiltrate, with scattered CD4$^+$ and CD8$^+$ exocytotic cells in the epidermis.

The patient did not have a recurrence of FDE after being advised not to take piroxicam or tenoxicam.

Discussion

Although there are only six published cases of FDE due to piroxicam,1-5 this is not, in our experience, a rare adverse effect of this drug.

Since the early 1960s, epicutaneous testing on residual lesions has been used as a diagnostic tool for the identification of the causative drug in FDE,6 with irregular results. In two large series, Alankko et al obtained positive open epicutaneous tests in 44 out of 54 patients, with positive reactions in all of the 25 patients with FDE due to phenazone salicylate.7,8 When positive, topical provocation is a reliable method for identifying the causative drug in FDE and can replace oral challenge with advantage, but a negative test cannot be validated.

Piroxicam has previously been tested epicutaneously in four patients with FDE, all with positive results,2-5 and in two of them with cross-reaction with tenoxicam and d Roxicam, the prodrug of piroxicam.4,5 Thiosalicylic acid was negative in the single patient tested.4 These findings are coincident with ours, with cross-sensitivity between piroxicam and tenoxicam and no cross-reactivity with thiosalicylic acid, suggesting that piroxicam and tenoxicam, but not thiosalicylic acid,
Figure 3
Chemical structure of piroxicam and thiosalicylic acid. These molecules have in common a benzene ring with an attached sulphur atom, which in piroxicam is "buried" within the adjoining ring.

have a common moiety (Figure 2) that is involved in the FDE.

On the other hand, in photosensitivity to piroxicam, patients do not cross-react with tenoxicam,9 as piroxicam seems to be photodegraded by UVA into a thiosalicylate portion, antigenically and structurally very similar to thiosalicylic acid as reported by Gonçalo et al (Figure 3).9–11 So, whereas patients with FDE to piroxicam should not be treated with tenoxicam, the latter drug has been shown to be safe in patients with photosensitivity to piroxicam.9

Histopathology, performed on the positive tests did not show the usual features of an allergic contact dermatitis but showed the typical features of an acute FDE, namely basal cell vacuolization, keratinocyte necrosis and subepidermal bullae. In immunohistochemistry, there was a similar staining for CD4 and CD8 on the dermal inflammatory infiltrate, confirming previous reports.12,13 Scattered exocytotic CD4+ and CD8+ cells were seen in the epidermis and, although double staining was not performed, CD8+ cells were apparently over-represented, in accordance with a probable major role of these cells in FDE.14 Strongly HLA-DR+ keratinocytes have been previously observed by Hindseén et al in two patients with acute FDE.12 This association of HLA-DR+ keratinocytes with CD8+ lymphocyte epidermotropism has been found by Smolle et al.15,16 As an alternative explanation, the direct activation of a subset of keratinocytes by the causative drug, independent of the presence of antigen-specific T cells, could induce keratinocyte HLA-DR expression as an earlier event in FDE.17

Performing patch testing and studying its clinical, temporal and histopathological characteristics, which in our case were similar to the skin reaction itself, may also bring some insight into the pathogenesis of FDE. This very probably involves an immune hypersensitivity reaction, although different in those aspects from the allergic contact dermatitis reaction. This clinical case is a good demonstration that different cutaneous adverse reactions to the same drug can have various pathogenic mechanisms, with different clinical implications.

References