Risk Factors for Delayed Renal Graft Function and Their Impact on Renal Transplantation Outcome

A. Figueiredo, P. Moreira, B. Parada, P. Nunes, F. Macário, C. Bastos, and A. Mota

ABSTRACT

Objective. The objective of this study was to evaluate the risk factors for delayed graft function (DGF) and their influence on renal graft outcome.

Patients and Methods. We reviewed 1462 consecutive renal transplantation and identified 245 patients (17.1%) with delayed graft function and 1120 patients with immediate graft function. Forty-one cases were excluded because of a nonfunctioning graft as well as 26 other cases because of insufficient data. We compared the incidence, donor and recipient risk factors, and impact on graft outcomes, as well as patient and graft survival of delayed graft function.

Results. Donor weight and age, recipient weight, age, length of dialysis, and cold ischemia time were significantly higher in the delayed graft function group. Higher rates of acute rejection and chronic graft dysfunction were observed in this group of patients; we also observed worse graft function and survival.

Conclusions. Multiple risk factors are associated with delayed graft function, which contribute decisively to a worse outcome.

Delayed renal graft function is defined as the need for dialysis within the first week posttransplantation, acute tubular necrosis is its most common cause. However, the consequences far exceed the transient need for dialysis because it may interfere with long-term graft survival. Our purpose was to evaluate the risk factors for delayed renal graft function and to measure their influence on renal graft outcomes.

PATIENTS AND METHODS

We retrospectively studied 1462 consecutive renal transplantations performed between 1980 and 2005. All relevant data concerning the donor, the recipient, and the transplantation were inserted into a database. The percentages of patients with immediate diuresis versus delayed graft function (DGF) were calculated. We evaluated risk factors for the occurrence of DGF, either donor-related or recipient-related. Also, the patient and graft survival rates, as well as long-term renal function, were evaluated.

Of the 1462 procedures, we excluded 41 cases (2.8%) of never-
functioning renal grafts, as well as 26 because of insufficient data. 
Of the remaining 1395 procedures, 1120 (82.9%) had immediate 
graft function (IGF), and 245 (17.1%) had DGF.

Immunosuppression protocols were similar between the 2 groups: 
in the IGF group, induction with either antithymocyte globulin, 
OKT3, or anti-CD25 (basiliximab) was given to 22.2% of cases, 
whereas in the DGF group, it was given to 21.2%.

For maintenance therapy, the IGF group received the following: 
azathioprine + prednisone, 21.1%; CyA + azathioprine + prednisone, 
50.0%; CyA + mycophenolate + prednisone, 26.2%; tacrolimus + mycophenolate + prednisone, 7.3%; CyA + sirolimus + prednisone, 1.6%; Mycophenolate + sirolimus + prednisone, 6.6%; Tacrolimus + sirolimus + prednisone, 1.8%; Sirolimus + mycophenolate + prednisone, 2.1%; CyA + everolimus + prednisone, 0.8%; or azathioprine + tacrolimus, 0.5%.

The DGF group received the following: azathioprine + prednisone, 37.3%; CyA + azathioprine + prednisone, 41.6%; CyA + mycophenolate + prednisone, 29.0%; tacrolimus + mycophenolate + prednisone, 10.6%; CyA + sirolimus + prednisone, 2.4%; mycophenolate + sirolimus + prednisone, 6.1%; tacrolimus + sirolimus + prednisone, 2.4%; sirolimus + mycophenolate + prednisone, 2.0%; mycophenolate + prednisone, 0.4%; CyA + everolimus + prednisone, 1.2%; or azathioprine + tacrolimus, 0.4%.

The differences were not significant.

The demographic characteristics of each of the groups were 
compared for donor and recipient factors as well as patient 
and graft survivals, acute rejection rates, and renal function.

The statistical analysis was performed using SPSS 11.5 (SPSS 
Inc., Chicago, Ill, USA) with Chi-square tests for quantitative 
variables, Students t test for continuous variables, and Kaplan-
Meier survival curves. Statistical significance was considered when 
P ≤ .05.

RESULTS

Mean donor weight was 66.9 ± 18.8 kg in the IGF group, 
whereas in the DGF group it was 72.8 ± 17.8, a significant 
difference (P = .005). Donor age was significantly lower in 
the IGF than the DGF group (32.2 ± 14.4 vs 36.3 ± 17.29, 
respectively; P = .000). Donor urinary output was signifi-
cantly higher in the IGF (347.5 ± 369.1 mL/h) than the 
DGF group (287.4 ± 298.5 mL/h; P = .009). Also, in the 
IGF group, cranial trauma was responsible for donor death 
in 87.4% of the cases, whereas in the DGF group it was 
responsible for 70.4% of the cases, a significant difference 
(P = .000).

Mean recipient weight was significantly lower in the IGF 
(62.0 ± 13.2 kg) than the DGF group (64.0 ± 15.7 kg; P = .043). Recipient age was also significantly lower in the IGF 
(40.6 ± 13.8) than the DGF group (43.4 ± 13.3; P = .005).

Previous dialysis time was 35.1 ± 33.2 months for the IGF 
and for the DGF group it was 48.3 ± 40.8 months, a 
significant difference (P = .000). Cold ischemia time was 
significantly shorter in the IGF (19.7 ± 6.6 hours) than the 
DGF group (36.5 ± 6.6 hours; P = .000). Acute rejection 
episodes occurred in 33.2% of patients within the IGF 
group versus 47.7% in the DGF group, a significant differ-
ence (P = .000).

Chronic graft dysfunction was lower in the IGF (23.4%) 
than the DGF group (35.6%), also significant (P = .001).

Table 1. Risk Factors and Transplant Evolution: Comparison of Immediate Diuresis and DGF Groups

<table>
<thead>
<tr>
<th></th>
<th>Immediate Diuresis</th>
<th>DGF</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donor weight (kg)</td>
<td>66.9 ± 18.8</td>
<td>72.8 ± 17.8</td>
<td>.005</td>
</tr>
<tr>
<td>Donor age</td>
<td>32.2 ± 14.4</td>
<td>36.3 ± 17.29</td>
<td>.000</td>
</tr>
<tr>
<td>Donor urinary output (mL/h)</td>
<td>347.5 ± 369.1</td>
<td>287.4 ± 298.5</td>
<td>.009</td>
</tr>
<tr>
<td>Recipient age</td>
<td>40.6 ± 13.8</td>
<td>43.4 ± 13.3</td>
<td>.005</td>
</tr>
<tr>
<td>Recipient weight (kg)</td>
<td>62.0 ± 13.2</td>
<td>64.0 ± 15.7</td>
<td>.043</td>
</tr>
<tr>
<td>Previous dialysis (mo)</td>
<td>35.1 ± 33.2</td>
<td>48.3 ± 40.8</td>
<td>.000</td>
</tr>
<tr>
<td>Cold ischemia time (h)</td>
<td>19.7 ± 6.6</td>
<td>22.1 ± 6.6</td>
<td>.000</td>
</tr>
</tbody>
</table>

Mean plasma creatinine level as 1 month was 1.4 ± 0.6 
mg/dL in the IGF group versus a significantly higher value 
(2.8 ± 2.1 mg/dL; P = .000). In the DGF group. At 1 year 
posttransplantation this value was 1.3 ± 0.4 mg/dL in the IGF 
group and 1.6 ± 0.8 mg/dL in the DGF group (P = .000), whereas at 10 years, it was 1.4 ± 0.8 mg/dL vs 1.7 ± 0.7, respectively (P = not significant [NS]).

Graft survival at 1 year was 94.9% in the IGF group, 
and 91.3% in the DGF group. At 5 years it was 91.1% in the 
IGF and 81.1% in the DGF group, whereas at 10 years it 
was 65.0% and 52.9%, respectively. Survival was signifi-
cantly better in the IGF group (P = .000).

Patient survival rate at 1 year was 97.4% in the IGF 
group, and 84.4% in the DGF group. At 5 years it was 
82.6% in the IGF group and 68.4% in the DGF group, 
whereas at 10 years it was 81.1% and 71.4%, respectively. 
These differences were not significant (Table 1).

Also, no significant differences were observed between 
the 2 groups regarding the number of HLA-compatible 
antigens. IGF group had 49.4% 3 or more compatible 
antigens, whereas the DGF group had 52.3%.

DISCUSSION

Our study disclosed more risk factors for DGF than other 

studies, which may be due to the larger number of 

transplantations. Cold ischemia time appears as an impor-
tant risk factor, consistent with other studies. It is a 
potential target to reduce the risk of DGF. However, most 
of the other risk factors are predetermined and not ame-
able to correction. We observed significantly better graft 
survival among grafts with immediate function, but not all 

studies have demonstrated this finding.4

In conclusion, DGF is associated with multiple risk 
factors: donor weight, age, cause of death, and urinary 
output; recipient weight, age, and time on dialysis; as well as
cold ischemia time. It contributes decisively to worse graft outcomes, higher rates of acute rejection and chronic graft dysfunction, as well as worse graft function and survival.

REFERENCES