Background: Serine protease inhibitor “Kazal type 5” (SPINK5, LEKTI) gene is located on chromosome 5q31-32 region. Interestingly, this region contains the so-called cytokine cluster including IL-4, IL-5, IL-9 and IL-13. Up to now, 32 single nucleotide polymorphisms have been identified on SPINK5 gene. In several studies it has been shown that G1258A (Glu420Lys) substitution is associated with atopy, atopic dermatitis, high levels of serum IgE and asthma.

Aim: This study aimed to determine the relationship of (Glu420Lys) substitution in SPINK5 gene with asthma and asthma phenotypes in Turkish children.

Methods: The frequency of G1258A (Glu420Lys) polymorphism was investigated by PCR-RFLP analysis using Hind I restriction endonuclease in 291 asthmatic children and 215 healthy controls. Allele frequencies of G1258A polymorphism were compared between asthmatic and healthy controls. Association between the polymorphism and asthma phenotypes including eosinophil counts, total IgE and FEV1 were analysed.

Results: SPINK5 mutant genotype was significantly more frequent in asthmatic children (0.333) compared to healthy controls (0.242) \((P = 0.026)\) in a model where the wild type G allele is taken as the dominant allele. Glu420Lys genotype did not show any significant association with asthma phenotypes.

Conclusion: These results suggest that Glu420Lys amino acid changes at SPINK5 gene may be a risk factor for asthma in this population.
the clinical pattern are presented in the table.

Conclusions: The age of the beginning of the symptoms and the need of an allergy consult was earlier in the 2nd sibling. In the group of siblings with homogeneous clinical pattern characterized by HDM allergic BA and AR, the symptoms began at a pre-school age. In the heterogeneous group, the 1st clinical manifestation was at a school age. Determinant genetic agents must be underlying in the group of siblings with homogeneous clinical pattern.

Introduction: Chemokines, such as eotaxin1, eotaxin2, RANTES, MCP provoke an eosinophilic response in the peripheral blood and airways via CCR3. CCR3 gene SNPs and Eotaxin gene SNPs already reported to be associated with asthma. We would search for the evidence of genetic interaction to blood eosinophilia among SNPs of Eotaxin genes and CCR3 gene in asthma.

Methods: Five hundred and thirty-three asthmatics were enrolled. Asthmatics with eosinophilia (>0.5 x 10⁷/L) were compared with those without eosinophilia (< 0.5 x 10⁷/L). The interactions were tested with two different methods. Chi-square test were used to compare SNP frequencies. Another interaction model was built with logistic regression.

Results: Eotaxin2 + 304C > A (29L > I) was significantly associated with three of four CCR3 SNPs in asthma with eosinophilia. (P = 0.037 ~ 0.009). Eotaxin2 + 304C > A (29L > I) with CCR3 SNPs effect was also significantly associated with blood eosinophilia in a interaction model constructed with logistic regression. (P = 0.0087)

Conclusions: This statistical model can probably be one of the evidence that CCR3 and Eotaxin genes interact to the blood eosinophilia in asthma.

Age, height, weight and body mass index and relationship with exhaled nitric oxide

Chambel, M; Paiva, M; Canvalho, S; Martins, P; Peralta, L; Vicente, H; Neuparth, N; Leiria Pinto, P Hospital de Dona Estefânia, Immunology Department, Lisbon, Portugal

Introduction: Values of exhaled nitric oxide (FENO) are variable, even in healthy subjects. This variation can be attributed to some variables, as age, height, weight and body mass index (BMI).

Objectives: To evaluate the relationship between FENO and age, height, weight and BMI in asthmatic patients younger than 18 years old.

Material and methods: During a 2 week period, 86 consecutive asthmatic patients younger than 18 years old, followed in our outpatient clinic, were submitted to a FENO determination (flow rate: 50 mL/sec). We recorded their age, height and weight. The body mass index (BMI) was calculated. We analyzed the relationship between FENO and age, height, weight and BMI.

Results: The mean age was 12.3 years old (SD 3.6), with 68.6% males. The median value for FENO, height, weight and BMI was 16 ppm (P25-75 = 12.8–64.3 ppm), 153 cm (P25-75 = 136–166 cm), 49 Kg (P25-75 = 34–61 Kg) and 20.5 (P25-75 = 17.5–23.5). Statistical significative correlations were found between FENO and height (0.648), weight (0.602), age (0.582) and BMI (0.424).

Discussion and conclusion: As in healthy subjects, a correlation between FENO and age, weight, height and BMI was found in our asthmatic population. This could be due to the same reasons pointed for healthy people.

The effects of emotions and stress on pulmonary function in asthmatic patients

Iamandescu, I; Onoaga, M

Colentina Hospital, Allergology Dept., Bucharest, Romania, Colentina Hospital, Internal Medicine Dept., Bucharest, Romania

Objectives: Clinical observations suggest that both positive and negative stress can precipitate asthmatic symptoms, but there isn't enough experimental evidence regarding the link between the specificity of emotions (inducing either active or passive coping) and bronchial diameter (constrictive and dilatory modifications). In this paper we studied the impact of different emotional states and types of stress on respiratory resistance in asthmatic and nonasthmatic individuals.

Methods: Participants (25 asthmatic and 25 nonasthmatic patients) viewed short film sequences selected to induce anxiety, anger, sadness, surprise, amusement, and completed two stressful tasks: mental arithmetic to induce active coping efforts and viewing of medical films to induce passive coping efforts. Peak Expiratory Flow (PEF), heart rate, and self-reported affective states were measured throughout the experimental session.

Results: Decreases (between 4–12%) in PEF were found in all emotional states compared with the neutral state, asthmatic patients showing stronger reactions to the films than healthy control subjects. The experimental studies inducing passive coping have generated PEF decreases in most subjects who viewed a medical (surgery operations) film and violent (drama) short film sequences (both in 88% asthmatics). Even in the case of positive emotions (using a funny short movie with Mr. Bean) PEF decreased with 4–9% in 76% of the subjects. The active coping induced by mental arithmetic have decreased PEF in 75% subjects but only with 4–7%. Also, significant increases in heart rate and self-reported affective states, sadness, amusement and dyspnea were detected.

Conclusions: Various emotional states and types of stress increase respiratory resistance (measured by PEF) but may be possible that the intensity of these modifications could decisively depend on the degree of emotional involvement of the subjects and the severity of bronchial inflammations during the experiment as shown by our own previous study (Iamandescu-1980).

Influence of obesity to osteoporosis in postmenopausal asthmatic patients

Ozol, D; Yanki, B; Koktener, A

Fatih University Faculty of Medicine, Department of Pulmonology, Ankara, Turkey, Fatih University Faculty of Medicine, Department of Physical therapy, Ankara, Turkey, Fatih University Faculty of Medicine, Department of Radiology, Ankara, Turkey

Both incidences of asthma and obesity are increasing worldwide. Age, usage of inhaled and oral corticosteroids are risk factors for osteoporosis for asthmatic patients in postmenopausal stage. In our study we aimed to find out the incidence of osteoporosis in our asthmatic patients and compare them with control groups. Then we investigated the effect of asthma related parameters and influence of obesity to osteoporosis. Forty-six patients (diagnosed as asthma according to GINA criterias) and 75 age matched postmenopausal women included to the study. Weight and height were measured and body mass index (BMI) was calculated. Bone mineral density (BMD) of total body, lumbar spine and femoral neck was measured by dual-energy X-ray absorptiometry.